GPU computing for systems biology
نویسندگان
چکیده
The development of detailed, coherent, models of complex biological systems is recognized as a key requirement for integrating the increasing amount of experimental data. In addition, in-silico simulation of bio-chemical models provides an easy way to test different experimental conditions, helping in the discovery of the dynamics that regulate biological systems. However, the computational power required by these simulations often exceeds that available on common desktop computers and thus expensive high performance computing solutions are required. An emerging alternative is represented by general-purpose scientific computing on graphics processing units (GPGPU), which offers the power of a small computer cluster at a cost of approximately $400. Computing with a GPU requires the development of specific algorithms, since the programming paradigm substantially differs from traditional CPU-based computing. In this paper, we review some recent efforts in exploiting the processing power of GPUs for the simulation of biological systems.
منابع مشابه
Fast Cellular Automata Implementation on Graphic Processor Unit (GPU) for Salt and Pepper Noise Removal
Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt an...
متن کاملImproving Resource Utilization in Heterogeneous CPU-GPU Systems
Graphics processing units (GPUs) have attracted enormous interest over the past decade due to substantial increases in both performance and programmability. Programmers can potentially leverage GPUs for substantial performance gains, but at the cost of significant software engineering effort. In practice, most GPU applications do not effectively utilize all of the available resources in a syste...
متن کاملParameter Estimation for System
SHARMA, SIDDHARTH. Parameter Estimation for System Biology Models on GPU Clusters . (Under the direction of Dr. James Tuck.) In this work, we consider the parallelization of interval based parameter estimation with uncertainty propagation for non-linear ODE models. This approach is especially important in systems biology research as it addresses the uncertainty often present in data recorded fr...
متن کاملUltra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملLarge-Scale Pairwise Alignments on GPU Clusters: Exploring the Implementation Space
Several problems in computational biology require the all-against-all pairwise comparisons of tens of thousands of individual biological sequences. Each such comparison can be performed with the well-known Needleman-Wunsch alignment algorithm. However, with the rapid growth of biological databases, performing all possible comparisons with this algorithm in serial becomes extremely time-consumin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Briefings in bioinformatics
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2010